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Abstract. In this paper, we give a method for generating cryptographically strong 44-bit 
S-boxes with the pure non-linear representatives of 3-quasigroup of order 4. S-boxes are 
widely used in block ciphers and hash functions and they are usually the only non-linear 
part in the systems and they have to be chosen carefully. 44-bit S-boxes are very suitable 
in the design of lightweight cryptographies, while the constructing of 44-bit S-boxes are 
usually by exhaustive computer search of permutations of degree 16. Our methodology is 
based on 3-quasigroup operations and it enables someone to get S-boxes optimal in 
linearity and differential uniformity, and all the component functions (algebraic normal 
form) of the generated S-boxes have maximal algebraic degrees. 

1. Introduction 

An mn-bit S-box can be viewed as a mapping form finite fields 2
mF  to finite fields 2

nF . S-boxes 

are widely used in block ciphers and hash functions. Usually, S-boxes are the only non-linear part in 
Feistel network and therefor they have to be carefully chosen to make the cipher to resist all kinds 
of attacks. 

It is conjectured that good S-boxes may be built by choosing a random, reversible table of 
sufficient large size. But small S-boxes require less resources than large ones. For example, a 44-
bit S-box needs less than a quarter hardware resources (expressed in gate equivalences) than that of 
an 88-bit S-box. So, 44-bit S-boxes are much more efficient to implement, especially in 
hardwares. Many lightweight hash functions and block ciphers use 44-bit S-boxes, such as 
PHOTON [1], SPONGENT [2], PRESENT [3] and LED [4], etc. 

The theory of quasigroup applications in cryptology goes through a period of rapid enough 
growth now. Quasigroup theory is widely used in the design of block ciphers, stream ciphers, hash 
functions, authentication of a message, secret sharing systems, etc. 

There are two main methods to generate S-boxes: (1) choosing large size random S-boxes; (2) 
generating small size S-boxes with good differential and linearity properties. Mihajloska and 
Gligoroski [5] gave a method for constructing 44-bit optimal S-boxes with quasigroups of order 4. 
For every example of S-boxes they constructed, it can be check that not all component functions 
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have maximal algebraic degrees. In this paper, we will give a method for generating 44-bit S-
boxes with 3-quasigroup, and via this method we can get 44-bit S-boxes optimal in linearity and 
differential uniformity, and with all component functions have maximal algebraic degrees. 

The paper is organized as follows: in Section 2 we will define a so called Q-function which is 
actually an S-box based on a 3-quasigroup. In Section 3 we discuss the important criterions of S-
boxes, include linearity, differential uniformity, and algebraic degree. In Section 4 we discuss the 
classification of 3-quasigroups of order 4. We give the construction of 44-bit optimal S-boxes with 
all component functions have maximal algebraic degrees in Section 5. Section 6 contains 
concluding remarks. 

2. 3-Quasigroups and Q-Functions 

A Latin square of order r is an r×r array with elements from an r-set Q, such that each symbol of 
Q occurs exactly once in each 1-dimensional subarray. A Latin cube of order r is a 3-dimensional  
array on set Q, such that each symbol in Q occurs exactly once in each 1-dimensional subarray. A 
1-dimensional subarray of a Latin cube with only the first (second, third) coordinate changes is 
called a fiber (row, column). It is easy to see that each 1-dimensional subarray of a Latin cube is a 
permutation of the set Q. Keeping the first (second, third) coordinate fixed gives us a layer (slice, 
floor). A layer contains rows and columns, a slice contains columns and fibers, a floor contains 
fibers and rows. A layer is a Latin square on Q. This also true for every slice and every floor. 

Example 1. Let Q = {0, 1, 2, 3}. A Latin cube on Q with the following four floors is shown in 
the following: 

0 1 2 3  1 2 3 0  2 3 0 1  3 0 1 2 

1 3 0 2  3 0 2 1  0 2 1 3  2 1 3 0 

3 2 1 0  2 1 0 3  1 0 3 2  0 3 2 1 

2 0 3 1  0 3 1 2  3 1 2 0  1 2 0 3 

Let L be a Latin cube with elements and indices in Q. Denote L(i, j, k) the element of L in cell (i, 
j, k). Define a ternary operation  on Q: 

 (x, y, z) = L(x, y, z), x, y, z  Q. 

The pair (Q,  ) is said to be a 3-qusigroup on Q. The cardinal number of Q, |Q|, is said to be the 
order of (Q,  ). 

A Latin cube defines a 3-quasigroup. The multiplication table of a 3-quasigroup is a Latin cube. 
Therefore the notions of a Latin cube and a 3-quasigroup will be freely interchanged in this paper. 

Lemma 1[6]. Let (Q,  ) be a 3-quasigroup, and x, y, z be variables. ∀	 a, b, c  Q, each of the 
following equations, 

 (x, a, b) = c,  (a, y, b) = c and  (a, b, z) = c, 

is uniquely resolvable in Q. 

Definition 1. Let Q be an r-set and (Q,  ) be a 3-quasigroup. Let q = 1 2 vq q q  be a sequence 

on Q. We define a mapping q : Q×Q  Q×Q as follows.  x = 1 2( , )x x   Q×Q 

q(x) = y = 1( , )v vy y  

where 
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q is called a Q-function based on (Q,  ). 

Theorem 1. The Q-function q in Definition 1 is a bijection on Q×Q. 

Proof: It is easy to see that we need only to show that q is an injection, i.e.  (x1, x2) and (s1, s2) 
 Q×Q, if (x1, x2)  (s1, s2), then q(x1, x2)  q(s1, s2). 

Denote y1 =  (x1, x2, q1), y2 =  (x2, y1, q2), yi =  (yi2, yi1, qi) (i = 3,4,…,r) and t1 =  (s1, s2, q1), 
t2 =  (s2, t1, q2), ti =  (ti2, ti1, qi) (i = 3,4,…,r). We show (x2, y1)  (s2, t1) at first. 

If x2  s2, then (x2, y1)  (s2, t1). If x2 = s2, then we have x1  s1 since (x1, x2)  (s1, s2). From 
Lemma 1 we have y1 =  (x1, x2, q1)   (s1, x2, q1) = t1 and so (x2, y1)  (s2, t1). 

Similarly, from (x2, y1)  (s2, t1) we have (y1, y2)  (t1, t2), and then (y2, y3)  (t2, t3), …, (yr1, yr) 
 (tr1, tr). This implies q(x1, x2)  q(s1, s2) and q is a bijection on Q×Q. 

3. S-Boxes and Their Properties 

In general, an S-box is defined as a table or a vector valued Boolean function or Boolean map. A 
Boolean function with m variables is a function f : 2

mF  2F , where 2F  is the finite field with two 

elements. A Boolean map of m bits to n bits is a map S : 2
mF  2

nF . We call S an mn-bit S-box. 

 u, v  2
mF , u = (u0, u1, …, um1), v = (v0, v1, …, vm1), the scalar product of u and v can be 

defined as 
1

0

,
m

i i
i

u v u v




  . 

For a Boolean function with m variables f : 2
mF  2F  and a  2

mF , the Walsh coefficient of f at a is 

defined as 

2

( ) ,[ ] ( 1)
m

f x a xW

x F

f a 



  . 

The linearity of f is defined as 

2

Lin( ) max | [ ] |
m

W

a F
f f a


 . 

For a given S-box mapping m bits to n bits S : 2
mF  2

nF  and  b  2 \{0}nF , the component function 

of S corresponding to b is defined as a Boolean function Sb : 2
mF  2

nF . 

2( ) , ( ) ,      .m
bS x b S x x F    

The linearity of S is defined as 

2 2, \{0}
Lin( ) max | [ ] |

m n

W
b

a F b F
S S a

 
 . 

The linearity of an S-box presents a measure for the resistance against linear cryptanalysis. The 
smaller the linearity is, the more secure the S-box is against linear attack. For even m, the smallest 
known linearity of a bijection on 2

mF  is 2m/2+1, see [7]. 

Let 0 1 1 2 0 1 1 2( , , , ) ,  ( , , , )m n
m nu u u u F v v v v F       and 

2( , ) { : ( ) ( ) }m
S u v x F S x u S x v      . 
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Define the differential uniformity of S as 

2 2\{0},
Diff( ) max ( , )

m n S
u F v F

S u v
 

  . 

Diff(S) is used to measure the resistance of S against differential cryptanalysis. Similarly, the 
smaller the Diff(S) is, the more secure an S-box against differential cryptanalysis. It is easy to see 
that Diff(S) is always even and it has been shown that no S-box with Diff(S) = 2, see [8]. Therefor 
we have Diff(S)  4. An S-box is said to be optimal if its linearity and differential uniformity reach 
the minimum. 

Definition 2[8]. Let S be a 44-bit S-box. S is called an optimal S-box if it fulfills the following 
conditions. 

1. S is a bijection; 
2. Lin(S) = 8; 
3. Diff(S) = 4. 

Another important criterion of an S-box is the algebraic degree. A Boolean function f : 2
mF  2F  

can be uniquely written in so called Algebraic Normal Form (ANF), as a polynomial with m 
variables, i.e., there exist coefficients 2

m
vc F  such that 

0 11

2

0 1 1 0 1 1( , , , ) m

m

v vv
m v m

v F

f x x x c x x x 
 



   . 

The algebraic degree of f is the maximal weight of v such that cv  0. Each mn-bit S-box S has 2n  
1 components 2( ) , ( ) , \{0}n

aS x a S x a F  . The algebraic degree of S is defined as the maximal 

degree of its components: 

2 \{0}
deg( ) max deg( )

n a
a F

S S


 . 

A good S-box would have high algebraic degree. 

4. 3-Quasigroups as Vector Valued Boolean Functions 

Let (Q,  ) be a 3-qusigroup of order r = 2t. Then  can be presented as a Boolean function,  : 
3

2
tF  2

tF , i.e.  can be viewed as a 3tt-bit S-box.  x, y, z, w  2
tF , the ternary operation  (x, y, z) 

= w is presented as 

 
0 1 0 1 0 1

0 0 1 0 1 0 1 1 0 1 0 1 0 1

( , , , , , , , , )

( , , , , , , , , ), , ( , , , , , , , , )
t t t

t t t t t t t

x x y y z z

f x x y y z z f x x y y z z

   

      

  
      

  

where 0 1( , , ),tx x  0 1( , , )ty y   and 0 1( , , )tz z   are the binary representation of x, y and z 

respectively, and :if
3

2
tF  2

tF , 0 1i t    are the binary representation of w (corresponding to the 

components of  ). 

Example 2. Take the 3-quasigroup in Example 1 it can be presented as a Boolean function : 
6

2F  2
2F  by: 

(x0, x1, y0, y1, z0, z1) = (f0(x0, x1, y0, y1, z0, z1), f1(x0, x1, y0, y1, z0, z1)) 

= (x0y0z0+x0y0+x0y1+x0z0+x0z1+x0+x1+y0+z0, x0y0z0+x0y0+x0y1+x0z0+x0z1+x1+y0z0+y1+z1). 

The algebraic degree of  is 3. Let f2 = f0  f1, then f0, f1, f2 are the three components of . 
A Latin cube of order 4 is called pure-non-linear if all the three components are non-linear.  

117



 

Let Q = 2
2F  and (Q,  ) be a 3-quasigroup. From Theorem 1 we know the Q-function defined in 

Definition 1 is the mapping q : 4
2F  4

2F , e.g., q can be viewed as a 44-bit S-box. An Q-

function is said to be an Q-S-box. 

Definition 3. Let C1 be a Latin cube of order 4 with floors f0, f1,f2, f3. Let  be a permutation on 
set {0,1,2,3}, a Latin cube C2 with floors f (0), f (1), f (2), f (3) is called a floor isomorphism of C1. 
The orbits of floor isomorphism are called the floor isomorphism classes. 

Computer search shows that there are 55296 Latin cubes of order 4. They can be divided into 
55296/4! = 2304 floor isomorphism classes. A Latin cube on Q = {0,1,2,3} is said to be floor 
standard if the elements on the top left corner of its four floors are 0, 1, 2, 3 respectively. In each 
floor isomorphism class, there is just one floor standard Latin cube, and we denote it as the 
representative of the class. We order the 2304 representatives by their lexicographic numbers, and 
denote them by L1, L2, …, L2304. The Latin cube in Example 1 is L122. From Definitions 1 and 2 we 
have: 

Theorem 2. If a representative can generate an Q-S-box, then every Latin cube in the same floor 
isomorphism class can generate the same Q-S-box.  

Proof: Let Li be a representative which can generate Q-S-box q with q = (q1 q2 q3 … qv). Let  
be a permutation on Q = {0,1,2,3} and L is a floor isomorphism of Li with elements on the top left 
corner of its four floors (0), (1), (2), (3). Denote p the Q-function given by L with 
permutation p = ( 1(q1),  1(q2), …,  1(qv)), then we have p = q. 

From Theorem 2, we need only to consider generating 44 optimal Q-S-boxes by the 2304 
representatives. In order to get optimal S-boxes with high algebraic degree, we use only the pure-
non-linear Latin cubes for generating Q-S-boxes. 

Computer search shows that 648 of the 2304 representatives, L1, L2, …, L2304, are pure-non-linear. 
The index numbers of the pure-non-linear representatives are listed in Table 1. 
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Table 1. The index numbers of the 648 pure-non-linear representatives 

31, 32, 33, 34, 35, 36, 45, 46, 47, 48, 49, 50, 75, 77, 80, 84, 85, 86, 89, 91, 93, 98, 99, 100, 103, 105, 107, 108, 110, 112, 
117, 119, 121, 122, 123, 126, 131, 133, 135, 136, 141, 142, 145, 147, 149, 150, 154, 156, 181, 183, 185, 187, 191, 192, 195, 
197, 199, 204, 205, 206, 229, 238, 239, 240, 241, 242, 243, 244, 253, 254, 255, 256, 259, 261, 266, 268, 269, 270, 273, 275, 
280, 281, 283, 284, 285, 294, 295, 296, 297, 298, 299, 300, 309, 310, 311, 312, 337, 339, 341, 342, 343, 344, 351, 353, 355, 
356, 357, 361, 393, 394, 395, 396, 397, 398, 451, 452, 453, 454, 455, 456, 458, 460, 464, 468, 469, 470, 472, 474, 477, 482, 
483, 484, 486, 488, 491, 492, 494, 496, 500, 502, 505, 506, 507, 510, 514, 516, 519, 520, 525, 526, 528, 530, 533, 534, 538, 
540, 541, 550, 551, 552, 553, 554, 555, 556, 565, 566, 567, 568, 592, 594, 597, 599, 603, 604, 606, 608, 611, 616, 617, 618, 
642, 644, 650, 652, 653, 654, 656, 658, 664, 665, 667, 668, 692, 694, 697, 698, 699, 700, 706, 708, 711, 712, 713, 717, 741, 
750, 751, 752, 753, 754, 755, 756, 765, 766, 767, 768, 771, 772, 776, 780, 781, 782, 784, 786, 790, 794, 795, 796, 819, 820, 
829, 830, 831, 832, 833, 834, 843, 844, 845, 846, 869, 870, 873, 875, 878, 882, 883, 884, 887, 889, 891, 896, 919, 920, 923, 
925, 927, 929, 933, 934, 937, 939, 941, 946, 969, 970, 971, 980, 981, 982, 983, 984, 985, 986, 995, 996, 1000, 1001, 1004, 
1008, 1009, 1010, 1013, 1015, 1018, 1022, 1023, 1024, 1025, 1026, 1027, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1051, 
1052, 1053, 1054, 1057, 1059, 1064, 1066, 1067, 1068, 1071, 1073, 1078, 1079, 1081, 1083, 1088, 1092, 1093, 1094, 1139, 
1142, 1146, 1150, 1151, 1152, 1155, 1156, 1159, 1160, 1162, 1166, 1168, 1170, 1173, 1174, 1176, 1180, 1181, 1182, 1185, 
1188, 1190, 1194, 1195, 1196, 1198, 1202, 1204, 1208, 1231, 1232, 1233, 1234, 1243, 1244, 1245, 1246, 1247, 1248, 1257, 
1258, 1281, 1282, 1283, 1286, 1290, 1294, 1339, 1340, 1341, 1345, 1348, 1352, 1353, 1354, 1355, 1356, 1357, 1366, 1367, 
1368, 1369, 1370, 1371, 1372, 1384, 1385, 1387, 1388, 1390, 1394, 1397, 1399, 1401, 1402, 1404, 1408, 1409, 1410, 1411, 
1412, 1413, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1437, 1439, 1443, 1444, 1446, 1450, 1495, 1498, 1501, 1502, 1504, 
1508, 1509, 1510, 1513, 1515, 1518, 1522, 1523, 1524, 1527, 1528, 1532, 1536, 1539, 1542, 1543, 1547, 1549, 1550, 1552, 
1556, 1557, 1561, 1563, 1564, 1565, 1566, 1575, 1576, 1577, 1578, 1623, 1624, 1633, 1634, 1635, 1636, 1637, 1638, 1640, 
1642, 1646, 1648, 1651, 1652, 1654, 1656, 1659, 1662, 1665, 1666, 1667, 1676, 1677, 1678, 1679, 1680, 1681, 1682, 1691, 
1692, 1693, 1694, 1696, 1698, 1705, 1706, 1707, 1708, 1710, 1712, 1718, 1720, 1721, 1724, 1727, 1731, 1733, 1734, 1779, 
1783, 1785, 1789, 1791, 1792, 1815, 1816, 1818, 1820, 1823, 1824, 1829, 1830, 1832, 1834, 1837, 1841, 1865, 1866, 1867, 
1876, 1877, 1878, 1879, 1880, 1881, 1882, 1891, 1892, 1895, 1897, 1899, 1903, 1905, 1906, 1909, 1910, 1913, 1917, 1919, 
1920, 1923, 1926, 1927, 1928, 1929, 1933, 1936, 1940, 1941, 1942, 1943, 1947, 1949, 1950, 1953, 1954, 1957, 1961, 1963, 
1964, 1966, 1968, 1971, 1975, 1977, 1978, 1979, 1980, 1989, 1990, 2035, 2036, 2037, 2038, 2047, 2048, 2049, 2050, 2051, 
2052, 2053, 2062, 2063, 2064, 2065, 2066, 2067, 2068, 2077, 2080, 2083, 2084, 2085, 2089, 2135, 2139, 2141, 2142, 2143, 
2147, 2149, 2150, 2154, 2155, 2157, 2161, 2163, 2164, 2167, 2169, 2171, 2175, 2177, 2178, 2179, 2181, 2185, 2189, 2235, 
2236, 2237, 2240, 2243, 2247, 2249, 2250, 2251, 2252, 2253, 2262, 2263, 2264, 2265, 2266, 2267, 2268, 2279, 2281, 2283, 
2284, 2285, 2289, 2293, 2294, 2297, 2298, 2299, 2303 

5. Construction of Optimal 44-bit S-Boxes 

In this section we give the method for generating cryptographically strong Q-S-boxes by using 
pure-non-linear Latin squares of order 4. In order to get optimal Q-S-boxes with all component 
functions have maximal degree, we use only the 648 pure-non-linear representatives. The graphical 
representation of the algorithm of Q-function (Q-S-box) in Definition 1 is shown in Figure 1. 

    q1  q2  q3  q4  q1  q2  q3  q4 
   ↗ ↓ ⇗ ⇓ ↗ ↓ ⇗ ⇓ ↗ ↓ ⇗ ⇓ ↗ ↓ ⇗ ⇓ 

x1  x2 ⇒ y1  y2 ⇒ y3  y4 ⇒ y5  y6 ⇒ y7  y8 

Figure 1. Graphical representation of Q-function q(x1, x2) = (y7, y8) 

Let I = {i | Li is pure-non-linear}. Let {Pj | 1  j  24} be the set of all permutations on {0, 1, 2, 
3}. By using an algorithm for generating optimal Q-S-boxes, which is roughly described in Table 2, 
we get 1008 different Q-functions q which are optimal Q-S-boxes. For any of the above optimal 
44-bit S-box, we have 2  deg(Sa)  3 for all a  4

2 \{0}F , a  0. 288 of the above 1008 Q-S-boxes 

satisfy deg(Sa) = 3 for all a  4
2 \{0}F  (the corresponding sequence q = (q1 q2 q3 q4 q1 q2 q3 q4), 

where q1 q2 q3 q4 is a permutation on {0, 1, 2, 3}), the index i of the 288 Li are shown in Appendix 1; 
the rest 720 L-S-boxes with deg(Sa) = 3 for 12 nonzero a  4

2F  and deg(Sa) = 2 for 3 nonzero a  
4

2F . 
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Table 2. The algorithm for generating optimal Q-S-boxes. 

for i in set I 
Take pure-non-linear representative Ci 
 for j = 1 to 24 
      q  (Pj, Pj) 
      Generate Q-function (Q-S-box) Sij 
      if Sij is optimal 
            Export i, q, Sij 
      end if 
 end for 

end for 

Example 3. The Q-S-box (in hexadecimal notation) generated by L122 shown in Example 1 with 
q = (1 0 2 3) is 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 
S(x) F 7 8 C D 6 5 B 9 4 A 3 1 2 E 0 

The Algebraic Normal Form of the 15 components of the above S-box are listed in the following. 

S1 = x0x1x2+x0x2x3+x0x2+x0x3+x1x2x3+x1x2+x1+1 

S2 = x0x2+x1x2x3+x1x2+x1+x2x3+x2+x3+1 

S3 = x0x1x2+x0x2x3+x0x3+x2x3+x2+x3 

S4 = x0x1+x0x2x3+x0x3+x1x2+x1x3+x1+x3+1 

S5 = x0x1x2+x0x1+x0x2+x1x2x3+x1x3+x3 

S6 = x0x1+x0x2x3+x0x2+x0x3+x1x2x3+x1x3+x2x3+x2 

S7 = x0x1x2+x0x1+x1x2+x1x3+x1+x2x3+x2+1 

S8 = x0x1x2+x0x1x3+x0x1+x0x2x3+x0+x1x2+x2x3+1 

S9 = x0x1x3+x0x1+x0x2+x0x3+x0+x1x2x3+x1+x2x3 

SA = x0x1x2+x0x1x3+x0x1+x0x2x3+x0x2+x0+x1x2x3+x1+x2+x3 

SB = x0x1x3+x0x1+x0x3+x0+x1x2+x2+x3+1 

SC = x0x1x2+x0x1x3+x0x3+x0+x1x3+x1+x2x3+x3 

SD = x0x1x3+x0x2x3+x0x2+x0+x1x2x3+x1x2+x1x3+x2x3+x3+1 

SE = x0x1x2+x0x1x3+x0x2+x0x3+x0+x1x2x3+x1x2+x1x3+x2+1 

SF = x0x1x3+x0x2x3+x0+x1x3+x1+x2 

6. Conclusions 

In this paper, we have gaven a method for generating cryptographically strong 44-bit S-boxes 
with 3-quasigroups of order 4. We get 1008 44-bit Q-S-boxes optimal in linearity and  differential 
uniformity, and 288 of them have the property that all components have maximal algebraic degree. 
These Q-S-boxes are cryptographically strong and can be used in the designs of light weight block 
ciphers and hash functions.  

In the algorithm of generating a Q-function, the permutation q = (q1 q2 q3 q4) could be replaced 
by any string of any length with alphabet Q = {0,1,2,3}. Then we can get more and more optimal S-
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boxes. A natural extension of this work would be generating cryptographically strong S-boxes of 
other size, such as 64-bit S-boxes and 88-bit S-boxes 
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Appendix 

Appendix 1. The 288 Q-S-boxes with all components have degree 3. 

q1q2q3q4 i  I  q1q2q3q4 i  I 

0 1 2 3 
594, 698, 1036, 1404, 1412, 1652, 
1680, 1830, 1880, 2163, 2243 

2 0 1 3 
240, 312, 533, 618, 698, 1195, 1282, 
1412, 1498, 1513, 1652, 1692, 2169 

0 1 3 2 
618, 706, 925, 1053, 1195, 1282, 
1354, 1410, 1692, 1899, 2068 

2 0 3 1 
122, 351, 995, 1038, 1057, 1355, 1450, 
1561, 1707, 1731, 1779, , 1882, 2262 

0 2 1 3 
506, 694, 941, 1180, 1208, 1504, 
1518, 1785, 1816, 2050, 2171 

2 1 0 3 
122, 269, 608, 984, 1426, 1444, 1446, 
1502, 1508, 1678, 1734, 1792, 2250 

0 2 3 1 
650, 981, 984, 1369, 1509, 1678, 
1734, 1792, 1891, 1964, 2251 

2 1 3 0 
183, 295, 694, 1208, 1504, 1518, 1785, 
2052, 2084, 2142, 2171 

0 3 1 2 
483, 606, 1040, 1057, 1340, 1450, 
1561, 1656, 1710, 1731, 2179 

2 3 0 1 
195, 240, 694, 1054, 1180, 1208, 1518, 
1680, 1691, 1830, 1880, 1892, 2163 

0 3 2 1 
540, 883, 995, 1355, 1426, 1444, 
1502, 1707, 1877, 2250, 2265 

2 3 1 0 
99, 150, 984, 1509, 1734, 1792, 1891, 
1947, 1975, 2251, 2285 

1 0 2 3 
99, 183, 699, 1504, 1509, 1662, 
1678, 1682, 1785, 1891, 2171, 2189, 
2251 

3 0 1 2 
240, 312, 618, 653, 698, 1064, 1195, 
1412, 1652, 1692, 1720, 1724, 1830 

1 0 3 2 
122, 351, 611, 937, 995, 1057, 1202, 
1355, 1422, 1426, 1450, 1707, 1731 

3 0 2 1 
99, 183, 986, 1180, 1366, 1437, 1504, 
1509, 1785, 1891, 2066, 2171, 2251 

1 2 0 3 
256, 351, 606, 1053, 1282, 1354, 
1410, 1561, 1651, 1656, 1708, 1710, 
2249 

3 1 0 2 
99, 149, 692, 984, 1426, 1444, 1502, 
1678, 1727, 1734, 1789, 1792, 2250 

1 2 3 0 
197, 240, 554, 604, 698, 754, 1412, 
1652, 1680, 1880, 2163 

3 1 2 0 
255, 351, 606, 1052, 1057, 1094, 1152, 
1450, 1656, 1710, 1731 

1 3 0 2 
183, 296, 694, 983, 1180, 1196, 
1208, 1510, 1518, 1680, 1830, 1880, 
2163 

3 2 0 1 
312, 339, 606, 1053, 1282, 1354, 1356, 
1410, 1411, 1561, 1656, 1710, 2164 

1 3 2 0 
312, 337, 566, 618, 712, 766, 1053, 
1195, 1354, 1410, 1692 

3 2 1 0 
122, 270, 794, 889, 995, 1018, 1355, 
1444, 1502, 1707, 2250 
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